- 신문 () - 신문

Pions in pBUU

Pawel Danielewicz

National Superconducting Cyclotron Laboratory Michigan State University

Transport 2017: International Workshop on Transport Simulations for Heavy Ion Collisions under Controlled Conditions

FRIB-MSU, East Lansing, Michigan, March 27 - 30, 2017

Interest: π as Probe of High- ρ Symmetry Energy B-A Li PRL88(02)192701: $S(\rho > \rho_0) \Rightarrow n/\rho_{\rho > \rho_0} \Rightarrow \pi^-/\pi^+$

Pions in pBUU

Danielewicz

Simulations of Heavy-Ion Collisions

Separation of time and distance scales:

- Short scales reduced to negligible extent with outcomes of events treated probabilistically
- Long scales treated explicitly and deterministically
- Cut-off scales: $t \sim 1 \text{ fm}/c$, $r \lesssim 1 \text{ fm}$

Primarily binary collision processes

Equation of state: if there is an optical potential affecting a particle, that particle impacts the interaction parts of thermodynamic functions.

Low-*E* pion production: $N + N \leftrightarrow N + \Delta$, $\Delta \longleftrightarrow N + \pi$

イロン 不得 とくほ とくほとう

Δ in π –*N* Interactions

π –*p* scattering cross sections

$$\sigma = \frac{\pi}{p^2} \frac{2J+1}{2s+1} \frac{\Gamma^2}{(E-m_\Delta c^2)^2 + \Gamma^2/4} \equiv \frac{\pi}{p^2} \frac{2J+1}{2s+1} \Gamma \mathcal{A}_\Delta(E)$$

 $J=3/2,~m_{\Delta}=1232~\textit{MeV}/\textit{c}^2,~\Gamma(\textit{p})\propto\textit{p}^3,~\mathcal{A}_{\Delta}$ - spectral funct

Pions in pBUU

ヘロト ヘアト ヘビト ヘビ

Inelastic NN Interactions

Decomposition of inelastic *NN* cross section Weil *et al* EPJA48(12)111

Pions in pBUU

 π vs Baryon Optical Potentials

$$\Delta \longleftrightarrow N + \pi$$
 $U_{\Delta} \stackrel{?}{=} U_N + U_{\pi}$

'Conservation' of potential consistent with the quark perspective. Also also greatly facilitates calculations of process kinematics as thresholds in kinetic energy stay put.

Ferini *et al* NPA762(05)147: $U_{\pi} = 0 \& U_{\Delta} = U_N$ employed in most models, including IBUU.

However, a strong isospin-dependent potential is needed to explain the existence of pionic atoms!

pBUU: *U* dependent on conserved quantities, density of baryon number and isospin - π end up with potentials that depend on isospin & symmetry energy

イロト イポト イヨト イヨト

 π vs Baryon Optical Potentials

$$\Delta \longleftrightarrow N + \pi$$
 $U_{\Delta} \stackrel{?}{=} U_N + U_{\pi}$

'Conservation' of potential consistent with the quark perspective. Also also greatly facilitates calculations of process kinematics as thresholds in kinetic energy stay put.

Ferini *et al* NPA762(05)147: $U_{\pi} = 0 \& U_{\Delta} = U_N$ employed in most models, including IBUU.

However, a strong isospin-dependent potential is needed to explain the existence of pionic atoms!

pBUU: *U* dependent on conserved quantities, density of baryon number and isospin - π end up with potentials that depend on isospin & symmetry energy

イロト イポト イヨト イヨト

 π vs Baryon Optical Potentials

$$\Delta \longleftrightarrow N + \pi$$
 $U_{\Delta} \stackrel{?}{=} U_N + U_{\pi}$

'Conservation' of potential consistent with the quark perspective. Also also greatly facilitates calculations of process kinematics as thresholds in kinetic energy stay put.

Ferini *et al* NPA762(05)147: $U_{\pi} = 0 \& U_{\Delta} = U_N$ employed in most models, including IBUU.

However, a strong isospin-dependent potential is needed to explain the existence of pionic atoms!

pBUU: *U* dependent on conserved quantities, density of baryon number and isospin - π end up with potentials that depend on isospin & symmetry energy

イロト イポト イヨト イヨ

(日)

 π vs Baryon Optical Potentials

$$\Delta \longleftrightarrow N + \pi$$
 $U_{\Delta} \stackrel{?}{=} U_N + U_{\pi}$

'Conservation' of potential consistent with the quark perspective. Also also greatly facilitates calculations of process kinematics as thresholds in kinetic energy stay put.

Ferini *et al* NPA762(05)147: $U_{\pi} = 0 \& U_{\Delta} = U_N$ employed in most models, including IBUU.

However, a strong isospin-dependent potential is needed to explain the existence of pionic atoms!

pBUU: *U* dependent on conserved quantities, density of baryon number and isospin - π end up with potentials that depend on isospin & symmetry energy

Symmetry-Energy Derived π Potential

★ E > ★ E

Pions Probe System at High- ρ !

 π test the maximal densities reached and collective motion then

Pions as Probe of High- ρ Symmetry Energy B-A Li PRL88(02)192701: $S(\rho > \rho_0) \Rightarrow n/\rho_{\rho > \rho_0} \Rightarrow \pi^-/\pi^+$

Pions in pBUU

Danielewicz

Interpretation of FOPI Data

Reisdorf et al NPA781(07)459

Transport IBUU04 Xiao et al PRL102(09)062502

Symmetry energy dropping with ρ , at $\rho > \rho_0$!?

Net π Yields and $U(\rho, \rho)$ in pBUU Reisdorf *et al* NPA781(07)459

Jun Hong & PD PRC90(14)024605, π^- and π^+

?Imperfect Mom Dependence?? [No sensitivity to π/Δ rates] affects maximal densities reached

Pions in pBUU

π Yields Reproduced with Softened U(p)

solid: new U(p), dashed: old U(p)

 $R_N \leftrightarrow$ elliptic flow

Jun Hong & PD PRC90(14)024605 too weak with new U(p

FOPI π^-/π^+ Reproduced by pBUU

... irrespectively of U(p), right panel

Left panel: discrepancies in the literature - correlation vs anticorrelation of $S(\rho > \rho_0)$ with π^-/π^+ .

Pions in pBUU

FOPI π^-/π^+ Reproduced by pBUU ... irrespectively of $S_{int}(\rho) = S_0 (\rho/\rho_0)^{\gamma}$:

Pions in pBUU

ъ

イロト イポト イヨト イヨト

n/p Ratio in pBUU at $\rho > \rho_0$

changes with the supranormal symmetry energy:

$$S_{\rm int}(\rho) = S_0 \left(\rho / \rho_0 \right)^{\gamma}$$

æ

イロト イポト イヨト イヨト

Why Differences for Net π Ratios?

In pBUU isospin-driven π^{\pm} optical potential

 π/Δ rate sensitivities claimed in Larionov&Mosel NPA728(03)135; Prassa *et al* NPA789(07)311 and Song&Ko PRC91(15)014901. Virtually none there in pBUU

Pions in pBUU

Paradox: Elliptic Flow vs π Yields

Changing mo-dep of MF: either v_2 good or near-threshold M_{π} , but not both!

Tinkering with Incompressibility

Results so far for K = 210 MeV.

While elliptic flow is more sensitive to the momentum dependence of mean field, or m^*/m , the sensitivity to incompressibility *K* is also there!

 $K = 380 \,\mathrm{MeV}$

프 🖌 🖌 프

Sensitivity of Elliptic Flow to m^*/m and K

 $K = 270 \,\text{MeV}$ and changing m^*/m $m^*/m = 0.7$ and changing *K*

Hysteresis in both cases due to competition between density and momentum dependence

Sensitivity of M_{π} to Incompressibility K

1

0

100 200

Bands for K = (240 - 300) MeV & optimal m^*/m

800

700

 \rightarrow Constraints on EOS, at moderately supranormal densities, à la LeFèvre *et al*

400

500

600

E (MeV)

²⁰⁹Bi+²⁰⁹Bi

300 400 500 600 700 800

p_T [GeV/c]

Energy Per Nucleon

Symmetric Matter

æ

イロト イポト イヨト イヨト

Pressure

Symmetric Matter

ъ

Conclusions

- Detailed balance must be obeyed for thermodynamic consistency
- Uncertainties in the near-threshold π production include π
 & Δ optical potentials & in-medium rates
- Pions probe high-ρ matter, net density, n/p-ratio, collective flow there! . . . U(p) & K
- pBUU reproduces FOPI π^-/π^+ , irrespectively of details in U and S
- High-energy π^+/π^- ratio more robust than ratio of net yields
- Efforts to reproduce simultaneously collective flow and pion yields lead to EOS constraints at moderately supranormal densities

S NSCL

Supported by National Science Foundation under Grant US_PHY-1403906

Conclusions

- Detailed balance must be obeyed for thermodynamic consistency
- Uncertainties in the near-threshold π production include π
 & Δ optical potentials & in-medium rates
- Pions probe high-ρ matter, net density, n/p-ratio, collective flow there! . . . U(p) & K
- pBUU reproduces FOPI π^-/π^+ , irrespectively of details in U and S
- High-energy π^+/π^- ratio more robust than ratio of net yields
- Efforts to reproduce simultaneously collective flow and pion yields lead to EOS constraints at moderately supranormal densities

Supported by National Science Foundation under Grant US PHY-1403906

